
Fast Neural Network Training on General Purpose
Computers

Harshit Kharbanda
University Of Illinois at Urbana-Champaign

kharban2@illinois.edu
∗Masters-CS student

Roy H. Campbell
University of Illinois at Urbana-Champaign

rhc@illinois.edu

Abstract—Neural networks allow the implementation of com-
plicated applications such as stock market predictions on low-end
PCs. However, the training of neural networks can take many
hours on a PC. In this paper we propose a technique for training
complicated neural networks on a commodity GPU (available in
a low-end PC) that completes 6 times faster than training on a
multi core. Using the Proben1 benchmark for our analysis we use
15 datasets from 12 different domains to explore our solution.
Our technique allows the training to be done with minimal CPU
utilization time. This allows the user to carry out other tasks
while the training is in progress. We compare several avenues
of neural network training on a general purpose computer. The
benchmark we use, covers problems of pattern classification from
real life and hence is best suited for our tests as we aim to solve
the problem of stock market predictions.

Index Terms—Backpropagation, GPGPU, High-performance
Computing, CPU Utilization, Stock Market Prediction

I. INTRODUCTION

Artificial neural networks(ANNs) have been used for a
variety of applications including pattern matching, data mining
and prediction. Despite wide applications, ANNs are used with
reservation as they need to be trained in order to operate effec-
tively. Training needs large training sets and much processing
time.

An ANN is built from a collection of artificial neurons
where each neuron consists of an activation function defined
according to the application. There are several types of ANNs
in the literature and can be classified into networks based
on supervised and unsupervised learning. In the supervised
method, the neural network is provided with the input data as
well as the target output whereas in the case of unsupervised
learning, only the input data is provided. ANNs can be further
classified into feedback and feedforward networks. Neural net-
work types and learning methods have been classified scheme
by Lippmann [1987]. In this paper we analyse the performance
of the backpropagation algorithm on various avenues present
on a low-end PC. Backpropagation can be used to train the
multilayer perceptron(MLP), which is a type of feedforward
Neural Network [2]. This particular ANN can be used for stock
market predictions with up-to 72% accuracy [20].

A multilayer perceptron has one input layer and one output
layer with one or more hidden layers. For our study, we have
selected an MLP with 3 layers, i.e. one hidden layer. We imple-
mented the ANN on an Nvidia Quadro GPU and optimized

the backpropagation algorithm to suit the GPU architecture.
We focused on exploiting the extensive parallelism offered
by GPUs to speed-up the training of this MLP. This research
focused on low-end PCs with GPUs to provide an inexpensive
approach to stock market predictions(which use complicated
neural networks). We have compared the performance of our
implementation with sequential and parallel implementations
of the same on multi-cores. The metrics we have used for our
analysis are MLP training time and CPU utilization.

This paper is organized in seven sections. Section 2 de-
scribes the related work. In section 3, we discuss the back-
propagation algorithm and its representation in matrix form.
In section 4 we give the pseudo code of our implementation.
Section 5 gives the experimental setup and Section 6 discusses
the results and their analysis. Section 7 concludes the paper
along with giving future directions of work.

II. RELATED WORK

One of the early works to analyze the performance of
general-purpose applications on GPU was by Che et al [12].
They compared the GPU and CPU performances of com-
putationally demanding applications belonging to different
categories of the Berkeley dwarves [13]. In their approach
Backpropagation has been classified as belonging to the group
of unstructured grid problems. The multi-core implementation
by the authors has been written in Open-MP. We chose P-
threads (over Open-MP) to implement the backpropagation
algorithm on the multi-cores because they gave us more
control on the execution of the threads and the role of each
thread in training the network. The authors have used the GPU
to offload the complex multiplications and use the CUDPP
library as a layer of abstraction for parallel reductions.

GPUs are programmed using techniques like OpenGL [3]
and DirectX [4]. With the increasing use of GPUs in general
purpose computation, Nvidia CUDA [5], AMD CTM [6],
Brook [7] and Accelerator [8] were developed. These APIs
enable the programmer to write programs having two com-
ponents, the kernel code and the host code. The kernel code
runs on the GPU wheras the host code runs on the CPU and
controls the entire execution including assigning kernel code
to the GPU and controls data transfer between GPU and main
memory. A variety of applications have been parallelized using
GPUs. A recent survey by Owens et.al [9] gives a detailed

Fig. 1. Feedforward Neural Network

account of some of the more recent GPU applications and
the speed-up achieved. In addition to single-GPU techniques,
GPUs are currently being used in clusters for projects such as
Folding@home [10] and Seti@home [11].

III. NEURAL NETWORKS AND THE BACKPROPAGATION
ALGORITHM

The biggest hurdle while using machine learning algorithms
is the large learning time. Implementation of these algorithms
on a GPU make them faster and thus shall help in increase of
the use of neural networks and machine learning in solving
pattern recognition problems on general-purpose laptops. We
parallelized machine learning algorithms on a GPU in such a
way that a single kernel function is executed on the various
thread blocks of the GPU with different data-sets. In this
section we discuss the parallel form of the backpropagation
algorithm.

A Feedforward Neural Network is given in figure 1. The
weights in this MLP are updated using backpropagation with
gradient-descent technique. Training is achieved by minimiz-
ing the error criteria E(difference between derived outputs
and actual outputs). The algorithm can be briefly explained
as follows- To keep things simple, we have used a neural
network with three layers. These are input, hidden, and output
layers. The backpropagation algorithm can be divided into two
stages, i.e., the forward pass and the backward pass. During the
forward pass, the training data is supplied to the input layer,
from where it propagates to the output layer through the hidden
layer. Each node in the hidden layer gets inputs from all the
nodes in the input layer. These inputs get multiplied by suitable
weights before being added. The output of a hidden node is
the non-linear transformation of this resulting sum. The output
layer works in a similar fashion to calculate the output values.
These output values are compared with target output values
and the error is determined. This error is backpropagated to
the hidden layer during the backward pass. During this phase,
the connection weights between the layers are updated using
the backpropagated error.

In the batch-mode variant of backpropagation, the mean
square error is determined for each input pattern. This error is

used to find the gradients of the hidden and final layers. The
∆w for hidden and final layers are then calculated according
to

∆wij = −γ ∗ oi ∗ δj
Where δ is the gradient for the hidden or the final layer. This
process is repeated for all the input patterns and the cumulative
∆w is determined. This cumulative ∆w is then used to adjust
the weights of the hidden and final layers. This whole process
accounts for one epoch. The epochs are repeated until the
mean square error becomes lower than the specified threshold
value. In the batch-mode variant the descent is based on the
gradient ∇E for the total training set.

∆wij(n) = −ε ∗ ∂Ep

∂wij
+ α ∗∆wij(n− 1)

where ε and α are two non-negative parameters called learning
rate and momentum. The momentum speeds up training in
very flat regions of the error surface. It is necessary to propa-
gate the whole training set through the network for calculating
∇E. This is one of the disadvantages of backpropagation as
it can lead to very low training rates for large training sets.
Backpropagation has been improved by having local learning
rates εij for every connection instead of a global value and
also by having local backtracking.

Backpropagation can be implemented on the GPU in several
ways depending on the specific technique used for updating
the weights. The most suitable form for data parallel imple-
mentations is the batch gradient-descent. Here the network
i.e. the current weights are fed to each of the GPU threads.
The number of instantiated threads depends on the number of
training sets.

IV. IMPLEMENTATION

We implemented sequential and parallel versions of back-
propagation with gradient descent on multi-cores and GPUs. In
all the implementations the weights were initialized to random
numbers. For our tests we used the Dell Precision M4500
laptop which has Intel i7 processor with 8 cores and the Nvidia
Quadro FX1800 GPU.

In the sequential implementation each input pattern is pro-
vided iteratively and the weights are updated. This process is
repeated over the total number of training samples. We carried
out the parallel implementation using P-threads [15]. In this
implementation the total number of threads created is equal
to the number of input patterns. Each thread takes an input
pattern and trains the network to obtain the matrix of ∆wijs.
This training takes place in parallel and scales to utilize all the
available cores. We calculate the cumulative ∆w by adding
all the ∆wij matrices generated. This portion of the program
is synchronized using a mutex variable. The threads repeat
this training until the error value falls below the specified
threshold.

We tried to optimize this parallel version of the code using
the GSL-BLAS library [16]. The program written using the
library performed better than the simple P-thread version when
the number of epochs required to train the network was in the

Algorithm 1 Pseudo Code for GPU implementation of Back-
propagation

//Initializing weight vectors
for i ← 0 to n-1 do

for j ← 0 to k-1 do
W1h[i][j] ← srand()

end for
end for

for i ← 0 to k-1 do
for j ← 0 to m-1 do

W2h[i][j] ← srand()
end for

end for

//Copy W1,W2,inp-h,target-h to device
W1d ← W1h
W2d ← W2h
target-d ← target-h
inp-d ← inp-h

//Define the kernel function
threads-per-block ← 512
blocks-per-grid ← ceil(p/512) //p represents the total num-
ber of training samples
thread-id ← blockId.x*blockDim.x+threadIdx.x

//The following code will be executed by all threads simulta-
neously. We have shown the execution of a single thread-id

//First layer output
O1[id] ← multiply(inp-d[id],W1)
O1[id] ← Activation(O1[id])
D1[id] ← O1[id] * (1-O1[id])

//Second layer output
O2[id] ← multiply(O1,W2)
O2[id] ← Activation(O2[id])
D2[id] ← O2[id] * (1-O2[id])

//Error and gradient calculation
E[id] ← target[id]-O2[id]
d2-d ← D2[id]*E[id]
d1-d ← D1[id]*W2*d2-d

//Transferring gradients to the host
d2-h ← d2-d
d1-h ← d1-d

//Calculating the ∆ws
∆w1 ← -r*d1-h*inp-h
∆w2 ← -r*d2-h*O1

//Weights are updated and the network is trained

order of a few hundreds. We also implemented the algorithm
using the map-reduce [17] model on multi-cores. We used
Phoenix [18] which is the state of the art map-reduce model
provided for multi-cores. Phoenix is written using P-threads
and scales well to utilize all the cores available. In the map
phase the training was performed and the ∆wij matrices were
emitted as the intermediate key-value pairs. In the reduce
phase these intermediate key-value pairs were added to obtain
one final ∆w. This reduce operation was performed by one
reduce worker. This process accounts for one epoch and is
repeated until the mean square error value falls below the
specified threshold value. This version of the implementation
did not perform well because of the overhead incurred in
the map and reduce functions. Due to the poor performance
of the training using Map-Reduce on multicores, we did not
implement Backpropagation using Map-Reduce on GPUs. [21]

The GPU does not have a huge amount of memory. Due to
this, the shared memory model which we used to implement
backpropagation on multi-cores could not be used for the GPU
implementation. The backpropagation algorithm given in [1]
was edited so as to reduce the memory consumption. The
altered algorithm used 50% lesser memory. The initial weights
and the input and target vectors were stored in matrices. These
matrices were copied to the GPU memory before beginning the
training. Memory consumption was reduced by converting the
δi matrices into single dimension matrices. The computations
in the algorithm had to be accordingly altered. For each input
vector a GPU thread was instantiated. These threads calculated
their respective ∆wij and stored the partial results in GPU
memory. The GPUs are well utilized using this approach and
are capable of handling thousands of threads at a time. Hence
an application having thousands of input training vectors (like
stock market prediction) scales well on the GPUs. This whole
implementation was carried out by one kernel function. Hence
the role of the CPU in the entire training was almost nil. After
all the threads have determined their respective ∆wij matrices,
another kernel function is called to find the cumulative ∆w
matrix by adding all the ∆wij . The execution of this kernel
function was inspired by the divide and conquer technique.
At any time during the execution of this kernel, the number
of instantiated threads is n/2 where n is the number of ∆wij

stored in the GPU memory. This reduces the computation time
compared to the case where addition would have been carried
out by the host. It also saves the time taken to transfer the
contents of GPU memory to the CPU.

V. EXPERIMENTAL SETUP

For evaluation purposes we used the Dell Precision M4500
mobile workstation with an Intel Core i7 Processor having
8 cores and an Nvidia Quadro FX 1800 GPU with 1GB
memory. The GPU implementation was evaluated on the Dell
Precision M4500 running Fedora 8 OS with CUDA 3.1. We
used the Proben1 benchmark to evaluate our implementations.
Backpropagation performed better on multi-core and GPUs
than on multiprocessors because communication delays are
lesser in these architectures. Between multi-core and GPU,

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000

Ti
m

e
(m

s)
 (X

 1
03)

Number of Input Patterns

Sequential Vs Parallel Implementation

Sequential
Parallel

Fig. 2. Comparison of the running times of Backpropagation - sequential vs
P-thread versions

the more the parallelism, better the performance of the GPU.
This depends on the size of the data-set. The detailed analysis
can be seen in the next section.

VI. RESULTS AND DISCUSSION

Our first performance analyses sequential and parallel im-
plementations of backpropagation on the CPU. In the parallel
implementation, we used P-threads for determining the ∆wij

and the cumulative ∆w was calculated in a sequential fashion
using a mutex variable. The results obtained can be seen
in the graph in figure 2. It can be seen that the parallel
implementation of backpropagation using P-threads is much
faster than the sequential implementation. As the number of
input patterns increase, the sequential implementation becomes
slower in comparison. For input sizes of 5000 patterns, the
parallel implementation is 5 times faster than its sequential
counterpart. The parallel implementation also scales well,
utilizing 40 percent of the available cores. The sequential
implementation on the other hand puts the entire load on a
single core making the training slower.

We then compared the simple P-thread implementation with
an equivalent implementation on Phoenix, the map-reduce
framework for multi-cores. Phoenix was much slower for an
input size of 5000 patterns. This is because the backpropaga-
tion algorithm does not fit the map-reduce model well. The
overhead of splitting data among the map workers and then
scheduling the workers is too much and does not result in
considerable speedup. Also, only one reduce worker can do
the job of combining all the outputs from the map workers.
Scheduling more reduce workers using Phoenix makes the
entire implementation slow. Overall no speedup(in comparison
to the simple P-thread implementation) could be achieved
when the network was trained using Phoenix as seen in Figure
3.

Our next comparison was between a parallel implementation
on multi-cores using the GSL-BLAS library and a similar
implementation using CUBLAS library [19]. The parallel

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000

Ti
m

e
(m

s)
 (X

 1
03)

Number of Input Patterns

Parallel Vs Phoenix Implementation

Parallel
Phoenix

Fig. 3. Comparison of the running times of Backpropagation - P-thread
version vs Phoenix implementation

CUBLAS implementation utilizes the GPU for carrying out
matrix multiplications. The rest of the program runs on the
CPU. The results obtained can be seen in the graph in figure
4. The GSL-BLAS implementation was found to be several
times faster than the CUBLAS implementation. A peculiar
CPU behavior was also seen when the parallel implementation
using CUBLAS was used to train the network. Valleys can be
observed in the CPU utilization graph in Figure 5 for CUBLAS
implementation. The reason for this being that only one kernel
can be active on the GPU at a time. The functions for matrix
multiplication provided by the CUBLAS library are optimized
kernels which run on the GPUs. In the parallel implementation
all the threads are launched at the same time, hence they reach
the matrix multiplication part of the program at roughly the
same time. At these points the parallelism is effectively lost
because the threads have to wait until the GPU is free. This
is the reason for the valleys which can be seen in the CPU
utilization graph. Though the time taken to carry out these
matrix multiplications is low, it has a huge affect on the par-
allelism if the number of threads in operation is huge. Hence if
the number of input patterns increase, the performance of the
CUBLAS implementation decreases. Overall the GSL-BLAS
implementation of the Backpropagation algorithm was around
1.5 times faster than its CUBLAS counterpart.

The fastest implementation of backpropagation on CPUs
was found to be the parallel implementation using the GSL-
BLAS library. We implemented the entire algorithm on the
GPU instead of using it only for matrix multiplications as in
the CUBLAS version. Our GPU version of backpropagation
was found to be 6 times faster than the GSL-BLAS implemen-
tation. This can be attributed to the fact that a GPU provides
a lot of cores that allows faster training of a large number
of patterns. Multiple threads are distributed and scheduled on
each core. Each thread handles one pattern and hence if the
number of training samples increase, the GPU implementation
becomes much faster than the fastest parallel implementation
on multi-cores. The CPU utilization is also fairly low when

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000

Ti
m

e
(m

s)
 (X

 1
03)

Number of Input Patterns

CUBLAS Vs GSLBLAS Implementations

CUBLAS
GSLBLAS

Fig. 4. Comparison of the running times of Backpropagation - parallel
CUBLAS vs parallel GSL-BLAS

Fig. 5. CPU utilization of Parallel CUBLAS implementation

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000

Ti
m

e
(m

s)
 (X

 1
03)

Number of Input Patterns

GSLBLAS Vs GPU Implementation

GSLBLAS
GPU

Fig. 6. Comparison of the running times of Backpropagation - parallel GSL-
BLAS vs GPU implementation

the network is trained on the GPU. Most of the time only one
core is 15 percent utilized which makes its utilization around 8
times lesser than that of the parallel implementation on multi-
cores. These results have been plotted in the graph in figure
6. The training times depicted in the graph include the time
taken to copy the contents from the host to the GPU.

VII. CONCLUSIONS AND FUTURE WORK

This paper performs a detailed analysis of the training of
feed forward networks on multi-cores and GPUs using back-
propagation. We have chosen backpropagation due to its wide-
spread applications especially in the areas of computational
finance and pattern recognition. Our work concludes that the

commodity GPU(available on a laptop) allows fast implemen-
tation of backpropagation on a low-end PC. Since GPUs are
becoming ubiquitous computing units in modern day PCs, this
encourages machine learning for common applications. The
major hindrance in using neural networks is their large training
time and required resources. GPUs can ameliorate this issue to
a considerable extent. Our work suggests that the user of a PC
can use the GPU while other applications proceed on the PC.
This allows more effective utilization of the hardware at hand.
We are currently working on improving prediction methods for
computational finance using feed forward networks on GPUs.

REFERENCES

[1] Raul Rojas. Neural Networks - A Systematic Introduction,
Springer.1996.

[2] Leon Bottou Igor Durdanovic Hans Peter Graf, Eric Cosatto and
Vladimire Vapnik. Parallel support vector machines: The cascade svm.
In NIPS, 2004.

[3] OpenGL,http://www.opengl.org
[4] http://www.directx.org/
[5] NVIDIA CUDA(Compute Unified Device Architecture),

http://developer.nvidia.com/object/cuda.html
[6] AMD CTM,http://ati.amd.com/products/streamprocessor/.
[7] Buck I, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston

and P. Hanrahan. Brook for GPUs:Stream Computing on Graphics
Hardware.SIGGRAPH.2004.

[8] Tarditi D. et al. Accelerator: using data parallelism to program GPUs
for general-purpose uses.ASPLOS.2006.

[9] Owens J D et al. A survey of general purpose computation on graphics
hardware.Computer Graphics Forum. Vol 26, 2007.

[10] Folding@home, http://www.scei.co.jp/folding
[11] SETI@home, http://setiathome.berkeley.edu
[12] Che et al. A Performance Study of General-Purpose Applications on

Graphics Processors Using CUDA. Journal of Parallel and Distributed
Computing, Elsevier. 2009.

[13] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K.
Keutzer, D.A.Patterson, W. L. Plishker, J. Shalf, S. W. Williams, K.
A. Yelick. The landscape of parallel computing research: A view from
Berkeley, Tech. Rep. UCB/EECS-2006- 183, Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley.
December 2006.

[14] Technical Brief: NVIDIA GeForce 8800 GPU Architecture Overview,
November 2006

[15] Lewis B. and D.J.Berg.Multithreaded Programming with
Pthreads.Prentice Hall,1998

[16] The GSL-BLAS library, http://www.gnu.org/software/gsl/
[17] Dean J and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. Operating Systems Design and Implementation, pages
137149, 2004.

[18] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis.Evaluating MapReduce for Multi-core and Mul-
tiprocessor Systems.Proceedings of the 13th Intl. Symposium on High-
Performance Computer Architecture (HPCA)Phoenix, AZ, February
2007

[19] CUDA CUBLAS Library, NVIDIA, March 2008
[20] P.B. Patel, T. Marwala. Forecasting closing price indices using neural

networks IEEE Conference on Systems, Man, and Cybernetics . 2006.
[21] Bingsheng He et al. Mars:a MapReduce framework on graphics pro-

cessors.Proceedings of the 17th international conference on Parallel
architectures and compilation techniques. pages 260-269,2008.

