
Privacy Preserving Data Distribution in Outsourced
Environments

T.J.V.R.K.M.K. Sayi∗1, R.K.N. Sai Krishna∗2, R. Mukkamala3, P.K. Baruah4

Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
{1sai.jyothir,2rkn.sai}@gmail.com, 4pkbaruah@sssihl.edu.in

3Old Dominion University, Norfolk, VA, USA
3mukka@cs.odu.edu

Abstract—With the increasing cost of maintaining IT
centers, there is a perceived trend among organizations to
turn to cloud servers for their storage and computational
needs. However, such outsourcing has also raised the
more serious issue of data privacy. In this paper, we
summarize our on-going work in privacy preserving data
outsourcing. In particular, in this paper, we discuss the
issue of employing vertical fragmentation to a relation so
that the fragment that is assigned to the cloud server
contains maximum data without violating privacy. We
represent the confidentiality constraints as a graph and
apply 2-coloring algorithms for the acyclic portion of the
graph. We use some heuristic to eliminate the cycles,
and complete the coloring of all nodes. We are currently
extending the work to multiple relations and constraints
with multiple attributes.

Keywords: Fragmentation, 2-graph coloring, out-
sourcing, confidentiality constraints.

I. INTRODUCTION

As the amount of information held by organizations
is increasing rapidly, there is a need for third-party
providers that can offer storage and computational facil-
ities with significant economies of scale. This enables
the organizations to outsource their data management
functions to third-party providers. The need is currently
met by cloud providers such as Amazon, Google, and
Akamai. But, this has also given rise to the issues of
data privacy and confidentiality. The topic of privacy in
outsourced environments has been the focus of several
researchers. Samarati and Vimercati discuss different
solutions to address the issue of data confidentiality
violations in outsourcing environments [1]. In particular,
the authors discuss the issues in data protection, query
execution, data privacy, data integrity and correctness,

∗Student Author

access control enforcement, and collaborative comput-
ing. Wang et al propose fine-grained access control
(encrypting each data block with a different key) and
adopting over encrypting for data isolation among users
as the primary means to achieve security and efficiency
in accessing outsourced data [2]. Aggarwal et al. propose
a solution in which only sensitive attributes are encrypted
and the attributes in a sensitive association are split
among different non-communicating servers [3]. But,
this scheme has two main limitations: (i) It assumes that
servers are non-communicating; in general, data owners
cannot enforce this rule on cloud operators; (ii) high
communication cost during query execution as the data
owner needs to interact with several servers.

Ciriani et al. [4] propose a solution using both frag-
mentation and encryption in which all fragments are
unlinkable. Further, in [5][6][7], the authors propose
different heuristics that relies only on fragmentation but
involves data owner in data storage and management. In
these solutions, the data owner holds all the sensitive
attributes and one of the attributes in each sensitive
association.

To avoid the high cost of encryption and decryption,
we propose a solution based only on fragmentation. For
simplicity, we consider a single data owner and a single
server scenario. However, the proposed algorithms are
easily extendable to other environments. Our method
fragments the data using graph-coloring techniques. The
solution aims to minimize the amount of data stored
and/or the workload at the data owner such that there
is no violation of data confidentiality. The confidential-
ity constraints are expressed as singleton attributes or
attribute pairs. For example, while Name and Disease
by themselves may not be confidential, the <Name,
Disease> pair may be confidential. Work on extending

this scheme to more complex confidentiality constraints
is currently in progress.

The paper is organized as follows. In section II, we
describe the system model that we have adopted. It also
introduces the needed notation and terminology. Section
III summarizes the proposed scheme, especially the
algorithm for constructing a confidentiality graph and the
fragmentation algorithm. In section IV, we illustrate our
scheme using an example. Finally, section V summarizes
the contributions of this paper and describes future work.

II. SYSTEM MODEL

We consider a relation r over the relation schema
R(a1, a2,, am) which consists sensitive data i.e., the
data which cannot be revealed to an external party. We
represent the sensitive data in the form of a set of
confidentiality constraints C(c0, c1,, cn) which is a
subset of the relation schema R as given in [1]. For
simplicity, we consider confidentiality constraints with
only one or two attributes.

For example, in Table I(b), c0 represents a single-
ton confidentiality constraint which indicates that the
attribute SSN should not be revealed. c1 indicates that the
attributes Name and Illness in association are sensitive.
Hence, both of the attributes in association should not
be revealed.

To preserve the sensitivity of an attribute or attributes
in association we divide the relation into two vertical
fragments so that one fragment, Fo is stored at the owner
and the other, Fs at an external server. To reconstruct the
r from Fo and Fs, they must have a common tuple-id
(tid). The tid can either be a primary key, if it is not
sensitive or an attribute which is not part of R that will
be included after the fragmentation process.

For example, in Table. I(a), the attribute SSN is a
primary key of the Patient relation but it cannot be the
tid because it is sensitive. The Table also indicates the
size of each attribute in bytes.

TABLE I

SSN(9) Name(15) DoB(8) ZIP(5) Job(10) Illness(7) Treatment(100)
322-42-4224 Mary 02/11/76 42422 Manager laryngitis antibiotic
424-22-2522 Pete 23/02/79 63244 Secretary diabetes insulin
522-93-5221 Lisa 15/06/82 74224 lawyer flu aspirin
422-52-5225 Deo 29/03/88 42214 Student laryngitis antibiotic
942-25-8242 Bobby 31/10/88 53252 banker diabetes insulin

(a) PATIENT relation

co = {SSN}
c1 = {Name, Illness}
c2 = {Name, Treatment}
c3 = {ZIP, Illness}
c4 = {ZIP, Treatment}
c5 = {Job, Illness}
c6 = {Job, Treatment}

(b) Set of Confidentiality constraints

A fragment F violates a confidentiality constraint c if
all the attributes in c are present in F. For example, if
the Patient relation in Table. I(a) is fragmented as F =
<Fo, Fs> where Fo = {SSN, Job, ZIP} and Fs = {Name,
Illness, Treatment, DoB}, then Fs violates both c1 and
c2 since Name, Illness and Treatment are present in Fs.

Now, our aim is to fragment r so that the data storage
and/or the workload at the owner is minimized and
none of the confidentiality constraints are violated by the
server fragment. In [5][7], the authors give four different
metrics to determine which of the attributes are stored
at the owner and which of them at the server through a
weight function and summarize them as given in Table.
II. For example, given F = <Fo, Fs> where Fo = {Name,
SSN, Job, ZIP}, Fs = {Illness, Treatment, DoB} and the
sizes of attributes as in Table. III(a) and the complete
expected query workload profile as in Table. III(b) then
the weight of the fragmentation with respect to different
metrics are as follows.

Wa(F) = 4; Ws(F) = 15 + 9 + 10 + 5 = 39; Wq(F) =
1 + 4 + 10 = 15; Wc(F) = 1 + 1 + 4 + 10 = 16

The query workload profile for the metric
Min-Query is a set of triplets of the form
{(q1,freq(q1),Attr(q1)),, (qk,freq(qk),Attr(qk))} and for
the metric Min-Cond it is a set of triplets of the form
{(q1,freq(q1),cond(q1)),, (qk,freq(qk),cond(qk))}.
Attr(q) and cond(q) are the set of attributes and the set
of conditions that appear in the where clause of the
query respectively. freq(q) is the expected execution
frequency of q.

TABLE II

Problem Metrics Weight Function
Min-Attr Number of attributes card(Fo)

Min-Size Size of attributes
∑
a∈Fo

size(a)

Min-Query Number of queries
∑
q∈Q

freq(q)s.t.Attr(q) ∩ Fo 6= ∅

Min-Cond Number of conditions
∑

cond∈Cond(Q)

freq(cond)s.t.cond ∩ Fo 6= ∅

(a) Classification of the weight metrics

Problem Target T w(t) ∀t ∈ T
Min-Attr T = {{a}|a ∈ R} w(t) = 1
Min-Size T = {{a}|a ∈ R} w(t) = size(a) 3 {a} = t

Min-Query T = {attr|∃q ∈ Q ,
Attr(q) = attr}

w(t) =

∑
q∈Q

freq(q)s.t.Attr(q) = t

Min-Cond T = {cond|∃q ∈ Q , cond ∈
Cond(q)}

w(t) = freq(cond)s.t.cond = t

(b) Target sets for different metrics

III. PROPOSED SCHEME

Since arriving at a minimal fragmentation is an NP-
Hard problem as discussed in [5], we propose a heuristic
algorithm to find the owner and server fragments.

TABLE III

Query q freq(q) Attr(q) Cond(q)
q1 5 DoB, Illness < DoB >, < Illness >
q2 4 ZIP, Illness < ZIP >, < Illness >
q3 10 Job, Illness < Job >, < Illness >
q4 1 Illness, Treatment < Illness >, < Treatment >
q5 7 Illness < Illness >
q6 7 DoB, Treatment < DoB >, < Treatment >
q7 1 SSN, Name < SSN >, < Name >

Complete query workload

The singleton confidentiality constraints represent sen-
sitive attributes. Hence we store them at the owner
and remove from C. In addition, we remove all the
constraints which include attributes in the singleton
constraints from C. Also, we store the attributes that are
not present in any of the constraints in C at the server.
For example, given r and C as in Table. I, we remove
{SSN} from C and add it to Fo and add DoB to Fs.

Our algorithm FRAGMENTATION takes as input, a
relation Schema R, a set C of confidentiality constraints,
a set T of targets and a weight function W defined on T
and returns a correct fragmentation <Fo, Fs> using the
2-graph coloring algorithm.

The algorithm constructs an acyclic graph G = (V,E)
using the function Construct-graph. In addition to G,
the function also returns a set of constraints To_solve
that are not considered so that an acyclic graph can
be constructed. Then the algorithm runs the 2-graph
coloring algorithm on G to find two fragments F1 and
F2. Subsequently, it labels the fragment with minimum
weight as Fo and the other as Fs. If G contains un-
connected components, then 2-graph coloring algorithm
returns a fragment pair for each unconnected component.
Then the algorithm finds the fragment with minimum
weight in each fragment pair and merges them to a single
fragment Fo. Similarly, it merges the other parts into Fs.

Now, the algorithm removes all the confidentiality
constraints in the set To_solve which contains at least
one attribute in Fo. If To_solve is nonempty, then it
contains the confidentiality constraints where all the at-
tributes in the constraints are in Fs. Hence, Fs violates all
the constraints in To_solve. So, to satisfy the constraints,
algorithm recurses with To_solve as the new set of
confidentiality constraints.

The function Construct-graph, constructs an acyclic
graph G as follows.

For each confidentiality constraint c = (ai, aj) in C,
the function adds ai and aj to V if they do not belong
to V and an edge (ai, aj) to E. If the function finds
a cycle with even number of edges by the inclusion
(ai, aj), then it removes (ai, aj) from E and adds it to
the set To_solve to avoid multiple cycles in future. If

Algorithm 1: FRAGMENTATION
input: R , C , T and W
output: F = < Fo, Fs >

/* A correct fragmentation */

G := Construct− graph(C,R)
/* G is a graph representation of

the confidentiality constraints */

< F1, F2 >:= 2-graph coloring(G)
if weight(F1) < weight(F2) then

Fo := F1 and Fs := F2

else
Fo := F2 and Fs := F1

end

foreach c = (ai, aj) ∈ To_solve do
if ai or aj ∈ Fo then

To_solve := To_solve \ c
end
if To_solve 6= ∅ then

C := To_solve
< F1, F2 >:= FRAGMENTATION
Fo := Fo ∪ F1 and Fs := Fs \ F1

end
return (< Fo, Fs >)

the function detects a cycle with odd number of edges,
say N, then 2-graph coloring algorithm results in a graph
which contains two adjacent vertices with same label.
That is, 2-graph coloring algorithm returns a fragment
pair < F 1, F 2 > such that there is a constraint (am, an)
whose attributes are present in the same fragment. Thus,
the fragment violates the constraint (am, an). So, an
edge must be ignored to apply the 2-graph coloring
algorithm. But, for a cycle with odd number of edges,
to satisfy all the constraints involved, dN/2e attributes
must be stored at the owner and bN/2c attributes at the
server. To find the set of dN/2e attributes which gives
a correct and minimal owner fragment with respect to
the weight function, the algorithm iteratively finds the
pair of fragments for all the sub-graphs of the cycle with
N−1 edges using the 2-graph coloring algorithm. Then,
it chooses a fragment pair in which the weight of the
fragment with dN/2e attributes is minimum compared
to the remaining fragment pairs.

Now the algorithm adds the edge, whose removal
from the cycle resulted in a sub-graph with the chosen
fragment pair, to To_solve and removes it from E. Then
the function Construct-graph returns G.

Function Construct-graph(C,R)
G := (V,E); V := ∅; E := ∅
To_solve := ∅
foreach c ∈ C do

/* c = (ai, aj) */

if ai, aj /∈ V then
Add ai, ajtoV

end
Add (ai, aj)toE
G1 := find_cycle(G)

/* G1 := (V1, E1) is a sub graph

where V1 = {al0 , al1 , al2 ,, alk} */

if Number of edges in the path are even
then

Remove (ai, aj) from E1 and add it
to To_solve

else
for iter := 0 to k do

< F 1, F 2 >:=
2-graph coloring(V1, E1\
(aiter mod k+1 , aiter+1 mod k+1))

weight[iter] := W (F i) where F i

is the fragment with more number
of vertices

end
Min_weight_index :=
min(weight[0],, weight[k])

Remove(almin_weight_index mod k+1
,

almin_weight_index+1 mod k+1
) from E

and add it to To_solve.
end

end
return G.

The query evaluation process follows either client-
server strategy or server-client strategy as proposed in
[5][6][7].

IV. ILLUSTRATION

In this section, we illustrate the proposed scheme
using an example scenario. We consider the PATIENT
relation (R) and a set of seven confidentiality constraints
(C). These are shown in Table I. Six of the constraints
are pairs (c1-c6) and one is a singleton (c0). With this
input information, we run the proposed scheme to deter-
mine the owner and server fragments. For simplicity, we
represent each attribute in the relation with its initial.
For example, SSN is referred to as S and ZIP by Z.

First, we start building the constraint graph using

Construct-graph algorithm. c0, being a singleton con-
straint, need not be considered here. c1-c3 result in a
graph shown in Fig. 1(a). When c4 is considered, the
function adds an edge between Z and T which results in
a cycle ZINTZ. Since the number of edges in the cycle
is even, the function adds (Z,T) to the set To_solve and
removes it from G. Subsequently, considering c5, it adds
the node J and an edge between J and I. The resulting
graph G is shown in Fig. 1(b).

Similar to c4, when c6 is considered, it results in a
cycle with even number of edges. To avoid the cycle,
JINTJ, the function adds (J,T) to the set To_solve
removing it from G. Hence, To_solve consists of (J,T)
and (Z,T). Then the algorithm performs 2-graph coloring
to G as shown in Fig. 1(c). This results in two fragments
F1 = {J,Z,N} and F2 = {I,T}.

Now, the algorithm determines the owner and server
fragments using the weight functions (Table II).

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Different instances of the confidentiality graph

• If the weight function is that of Min-Attr, then
Wa(F1) = 3 and Wa(F2) = 2. Since Wa(F1) >
Wa(F2), Fo = F2 and Fs = F1. Since, the attribute
‘Treatment’ is present in Fo, Fs does not violate
any of the two constraints in To_solve. Hence,
the algorithm removes them from To_solve. Since,

To_solve is empty, the algorithm does not recurse.
• If the weight function is that of Min-Size, then
Ws(F1) = 10 + 5 + 15 = 30 and Ws(F2) = 7 + 100
= 107. Since Ws(F1) < Ws(F2), Fo = F1 and Fs =
F2.Since the attributes ‘ZIP’ and ‘Job’ are present
in Fo, similar to the previous case, the algorithm
does not recurse.

• If the weight function is that of Min-Query, then
Wq(F1) = 10 + 4 + 1 = 15 and Wq(F2) = 10 + 4 +
5 + 1 + 7 + 7 = 34. Hence, Fo = F1 and Fs = F2.

• If the weight function is that of Min-Cond, then
Wc(F1) = 10 + 4 + 1 = 15 and Wc(F2) = 5 + 4 +
10 + 1 + 7 + 7 + 1 = 35. Hence, Fo = F1 and Fs

= F2.
After adding the singleton constraints to Fo and the

attributes that are not involved in C to Fs, the fragments
Fo and Fs corresponding to the four metrics are as shown
below.

• Min-Attr: Fo = {SSN, Illness, Treatment}; Fs =
{DoB, Name, Job, ZIP}.

• Min-Size, Min-Query, Min-Cond: Fo = {SSN, Job,
ZIP, Name}; Fs = {DoB, Illness, Treatment}.

If we run the heuristics proposed in [5][6][7] for
the same example, the resulting fragmentation for each
metric is as follows.

• Min-Attr: Fo = {SSN, Illness, Treatment}; Fs =
{DoB, Name, Job, ZIP}.

• Min-Size: Fo = {SSN, Job, ZIP, Name, Illness}; Fs

= {DoB, Treatment}.
• Min-Query, Min-Cond: Fo = {SSN, Job, ZIP,

Name}; Fs = {DoB, Illness, Treatment}.
Thus, the proposed scheme has a definite improvement

over the existing solutions. It performs at least as good
as the current ones and often better.

Further, if we add an additional constraint c7 = (I,T) to
the set C, then Construct-graph adds an edge (I,T) to G
which results in a cycle as shown in Fig. 1(d). Since the
number of edges N is 3, dN/2e i.e., two attributes must
be stored at the owner. On removing the edges (I,T), (I,N)
and (T,N) 2-graph coloring algorithm returns the frag-
ment pairs {{I,T}, {N}}, {{I,N}, {T}} and {T,N}, {I}}
respectively. Now, considering the weight function cor-
responding to Min-Size, min{Ws(I,T),Ws(I,N),Ws(T,N)}
= min{107,22,115} = 22.

Hence, the algorithm removes (I,N) from G and adds
it to To_solve. The resulting graph is as shown in
Fig. 1(e). Then, the algorithm applies 2-graph coloring
as shown in Fig. 1(f) which results in the fragments
F1 = {Z,T,J} and F2 = {I,N}. As we continue with

this set further, we obtain the fragments Fo and Fs

corresponding to Min-Size are {SSN, ZIP, Job, Illness,
Name} and {Treatment, DoB} respectively. Clearly, the
proposed scheme is efficient as well as effective.

V. SUMMARY AND FUTURE WORK

Increasingly, organizations are outsourcing their data
and computations. However, in order to abide by the pri-
vacy laws, they must be careful in what they outsource.
While prior research suggested encryption and fragmen-
tation as the tools to achieve privacy, we have only used
fragmentation as a mechanism. This is primarily due to
the high cost of encryption and decryption as well as
the cost of managing the keys. We have extended the
work of Ciriani et al. We have employed graph-coloring
algorithms to determine which parts of a relation can be
outsourced and which need to be kept at the owner.

We are currently extending this work to deal with
confidentiality constraints that overlap several relations
and constraints with more than 2 attributes. We are also
looking into ways of optimally splitting a user query into
sub-queries so that the task of query evaluation can be
shared suitably between the server and the owner.

ACKNOWLEDGMENT

We dedicate this work to the Founder Chancellor of
Sri Sathya Sai Institute of Higher Learning, Bhagawan
Sri Sathya Sai Baba.

REFERENCES

[1] P. Samarati and S. De Capitani di Vimercati. Data Protection
in Out-sourcing Scenarios: Issues and Directions, in Proc. of
ASIACCS 2010, Beijing, China, April 2010.

[2] W. Wang, Z. Li, R. Owens, and B. Bhargava. Secure and Efficient
Access to Outsourced Data, in Proc. of CCSW 2009, the 2009
ACM Workshop on Cloud Computing Security .

[3] G. Aggarwal, et al. Two can keep a secret: a distributed ar-
chitecture for secure database services, in: Proc. CIDR 2005,
Asilomar, CA, USA, January 2005.

[4] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S.
Paraboschi, and P. Samarati, Fragmentation design for efficient
query execution over sensitive distributed databases, in: Proc. of
ICDCS 2009, Montreal, QC, Canada, June 2009.

[5] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Keep a few: Outsourcing data
while maintaining confidentiality, in: Proc. of ESORICS 2009,
Saint Malo, France, September 2009.

[6] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Enforcing Confidentiality Con-
straints on Sensitive Databases with Lightweight Trusted Clients,
in: Proc. of DBSec 2009, Montreal, QC, Canada, July 2009.

[7] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Selective data outsourcing for
enforcing privacy, in: Journal of Computer Security (2011), 531-
566.

